
Introduction to Machine Learning

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.” − Tom Mitchell

Experience (E): It is usually refers to the dataset with which the algorithm is trained.
Depending on the problem statement, the nature of the dataset may vary. Some algorithms
require historic data, some may require image data and some algorithms use real-time envi-
ronment specific data (Reinforcement Learning). For most algorithms we perform ‘training’
with a subset of the collected data (training set) and ‘test’ the trained model with another
subset of the collected data (test set). It is important that these two subsets satisfy the
following conditions,

• The subsets need to be mutually exclusive and exhaustive.

• The subsets need to follow the same distribution, i.e., the nature of the data must be
consistent.

Say for example, we have to predict whether a student will pass or fail the finals de-
pending on his performances throughout the semester. We may consider a collection of
performances of 10,000 students in the semester along with their final result as the dataset
(Experience). The performance may include their weekly quiz scores’ average, their mid-
term scores, attendance, etc. We refer to these parameters as features or attributes. The
value that we want to predict (in this case, whether the student passed or not) is referred to
as the ground truth.

We represent the feature vector using X and the ground truth using y . The aim of any
machine learning algorithm is to approximate the function that maps X to y . For the
example that we mentioned above, the features and corresponding ground truths are,

X =

 quiz average
mid− term score

attendance

 y =
[
passed or not

]
Since there are there real-valued variables in vector X and only two possible values for

y, we say that,
X ∈ R3 and y ∈ {0, 1}

1



X
f(X)

y

Note: We can prove that there exists a hypothetical function (f(X)) that can success-
fully map X to y with no error. But it is almost impossible for a learning algorithm to
approximate a function that can precisely perform the mapping. Therefore, we try to learn
an estimating function (f̂(X)) that is very close the hypothetical function and provides a
reasonable estimation of the ground truth.

Task (T): Depending on the nature of the problem statement, we decide on the kind of
task that needs to be performed. There are various classes of tasks, but most of them fall
under two major categories − Classification and Regression. When the expected output
of the function is a discrete and finite set of values, which in most cases will be binary (for
example, ‘yes’ or ‘no’) or categorical, we perform classification. Our previous example of
predicting whether the student will pass or not is a classification task. In regression we aim
to map the features to a real number. Therefore, as opposed to the output of classification,
the output of regression will be continuous values (mostly confined to a finite range). If in
our example, we intend to find the students’ final scores rather than predicting whether they
will pass or fail, the task would be a regression task.

Performance Measure (P): Algorithms that try to perform the aforementioned tasks do
not learn everything in one go. Rather, they undergo an iterative learning process. After
each iteration of learning, we evaluate the hypothesis of the algorithm (the function learnt
in that iteration) using a performance measure. The performance measure compares the
predicted values with the ground truth and gives an estimate of how close these two
values are. In an ideal world, we want these two values to be equal. The difference between
the predicted value and the ground truth (expected value) is referred to as error. The choice
of performance measure depends on various factors like,

• The type of task the algorithm intends to perform.

• The specifics of the problem statement, i.e., what you want to optimize.

Our Assumptions

For the sake of simplicity and ease of visualisation, we restrict ourselves to only one feature in
X and one output in y. Needless to say that the ideas expressed with this primitive example
can be extrapolated to any number of features and outputs. Though numerous algorithms
have been proposed for both regression and classification, we will stick to two simple yet
widely used algorithms − Linear Regression and Logistic Regression. We will evaluate
the performance of these algorithms using separate sets performance metrics. For Linear
Regression (regression task), we will use Mean Squared Error (MSE), Mean Absolute Error
(MAE) and R2 Score. For Logistic Regression (classification task), we will use binary cross-
entropy as the performance measure and analyse the model’s predictions based on precision,
recall and F1-score.

2



Linear Regression

Linear Regression falls under the category of regression. As we discussed earlier, the output
of a regression task is real-valued. Therefore, we express the feature vector and the ground
truth as,

X ∈ R1 and y ∈ R1

The linear regression model tries to establish a linear relationship between the feature X
and ground truth y. Therefore, the linear regression model estimates a linear function that
best fits the distribution of the random variable pair (X, y). Let us consider the following
example for our discussion.

Figure 1: Distribution of y over X

Two variables u and v are said to be linearly correlated if a linear increase in one
variable leads to linear increase in the other. Linear regression assumes that the variables
X and y are linearly correlated, and tries to find the regression line that best fits the
correlation. A general line equation in a 2D plane is given by,

y = wx+ b

Thus, a line in a 2D plane is dictated by two independent values - w (weight) and b
(bias). Therefore, the aim of the Linear Regression algorithm is to find that set of (w, b)
out of all possible such pairs defining a line that best fits all the points in the plot. It is
evident that a single line cannot contain all the points in the scatter plot shown in Fig. 1.
We aim, instead, to find the line of best fit. Due to this approximation we end up with a
deviation from the original value, called error. Let ŷ be the value predicted by the Linear
Regression model whose parameters are w and b. According to the definition, the predicted
value ŷ is computed as,

ŷ = wX + b (1)

3



The error is calculated as the difference between the actual value (ground truth) and the
predicted value,

error = ground truth − predicted value

= y − ŷ (2)

Say for example, we have m different values of X and we use them to calculate m values
of ŷ using Eqn. (1). Then we try to calculate the total error by averaging all m errors
calculated using Eqn. (2). It is possible that pairs of opposite signed errors can nullify each
other while taking the average. Thus a simple mean of errors cannot give a good estimate of
overall error. Therefore we define a function called cost function that takes the expected
value (y) and the predicted value (ŷ) as inputs and estimates the deviation of the predicted
value from the ground truth. Though there are many cost functions, we will stick to easiest
of them all − Mean Squared Error (MSE), which is given by,

J(y, ŷ) =
1

m

m∑
i=1

(yi − ŷi)2 (3)

Expanding ŷ using Eqn. (1),

J(y, wX + b) =
1

m

m∑
i=1

(yi − (wXi + b))2 (4)

In Eqn. (4) we see that the cost function J is a function of just w and b, as the ground
truth and the input features are already known. Thus we represent the cost function as,

J(w, b) =
1

m

m∑
i=1

(yi − (wXi + b))2

=
1

m

m∑
i=1

y2i − 2yi(wXi + b) + w2X2
i + 2wXib+ b2

=
w2

m

m∑
i=1

X2
i +

2w

m

m∑
i=1

(yiXi) +
2b

m

m∑
i=1

(yi) +
2wb

m

m∑
i=1

(Xi) +
b2

m

m∑
i=1

1 +
1

m

m∑
i=1

y2i

= w2C1 + wC2 + bC3 + wbC4 + b2 + C (5)

From Eqn. (5) we observe that the the cost function (J) is quadratic in w and b. Such
functions when plotted in a 3D space will result in a paraboloid.

4



Figure 2: Cost Function J as the function of w and b

It is evident that for the algorithm to perform better, the cost function J should be
minimum. The beauty of choosing MSE as the cost function is that the plot of the function
is an upward paraboloid, and all upward paraboloids have one defined global minimum. A
function with such well defined minima and with no saddle point (a point where the function
neither increases or decreases) is called a convex function. The cost function chosen to
evaluate the performance of the model must be a convex function.

One possible way of minimising the cost function is by differentiating Eqn. (4) partially
w.r.t. to w and b, and finding the optimum value of w and b. We call this the normal
equation method. But such an approach is often computationally expensive when there are
more features, as the same operation is performed repeatedly to find optimum value of w1,
w2,. . . wn and b. Therefore, we take an indirect approach to reach the minimum of the
function − gradient descent.

Gradient is defined as the rate of change of a function with respect to a variable. For
a function in one variable, the gradient is simply the derivative of the function w.r.t. that
variable.

if y = f(x) then, gradient =
d

dx
f(x)

For functions in more than one variable, like our cost function, we define gradient as the
partial derivative of the function w.r.t. to each variable.

if y = f(x1, x2, x3) then, gradient = ∇(y) =

∇x1(y)
∇x2(y)
∇x3(y)

 =


∂y
∂x1
∂y
∂x2
∂y
∂x3


If the gradient with respect to a variable is positive then the function increases with an

increase in that variable. We therefore need to reduce the value of the variable in order to

5



reach the minimum. If the gradient is negative then the function decreases as the variable
increases. Therefore the we need to increase the value of the variable to reach the minimum.
In either case, we travel in the direction opposite to that of the gradient. This approach
of descending towards the minimum based on the value of the gradient is called gradient
descent. In general, to get the optimum value of a function, we update the variable in the
opposite direction of the gradient.

xi ← xi −
∂y

∂(xi)
∀i (6)

In Linear Regression the function for which we aim to find the minimum is the cost
function (J). From Eqn. (4) we conclude that J is a function of two variables w and b.
Therefore the gradient descent algorithm dictates that the parameters (w, b) should be
updated in the opposite direction of their gradients computed in J . Therefore we arrive at
the following equations.

w ← w − ∂J(w, b)

∂(w)
b← b− ∂J(w, b)

∂(b)
(7)

In practice, we note that these updates when performed for functions with sharp minima
often overshoot the values of the variables from the minima. Therefore we introduce another
parameter called learning rate, denoted by η, to control the amount by which these values
are updated. Therefore (7) is rewritten as,

w ← w − η∂J(w, b)

∂(w)
b← b− η∂J(w, b)

∂(b)
(8)

Eqn. (8) is the core idea of Linear Regression and many other Machine Learning and Deep
Learning Algorithms. In Linear Regression we initialise w and b with random values and
update them as per Eqn. (8) till we reach close to the minima. Now that we have established
the fundamental relationship, we need to compute the gradients of the cost function with
respect to w and b to implement the algorithm.

Computing Gradients

∂J(w, b)

∂w
=

∂

∂w

1

m

m∑
i=1

(yi − (wXi + b))2

=
1

m

m∑
i=1

∂

∂w
((wXi + b)− yi)2

=
2

m

m∑
i=1

((wXi + b)− yi)
∂

∂w
((wXi + b)− yi)

=
2

m

m∑
i=1

(ŷ − yi)(Xi) (9)

6



Similarly we can compute the gradient of b in J which will be,

∂J(w, b)

∂w
=

2

m

m∑
i=1

(ŷi − yi) (10)

Now that we have established all requirements needed to implement the Linear Regression
algorithm, we will list out the steps involved in the algorithm.

Algorithm 1: Linear Regression

Data: Input features (X ), ground truth (y), learning rate (η), number of steps
(steps)

Result: Optimum values of w and b such that J(w, b) is minimum
w ← random value, b← random value
i← 1
while i ≤ steps do

ŷ ← wXj + b ∀j
cost← 1

m

∑m
j=1(yj − ŷj)2

gradientw = 2
m

∑m
j=1(ŷj − yj)(Xj)

gradientb = 2
m

∑m
j=1(ŷj − yj)

w ← w − η × gradientw
b← b− η × gradientb
i← i+ 1

end

Performing the above algorithm for 10000 iterations with a learning rate of 0.01, the
regression line that fits the distribution shown in Fig. 1 is plotted in Fig. 3.

Figure 3: Regression line for the distribution

7



Logistic Regression

Logistic Regression is a classification algorithm used for binary classification, i.e, there are
only two classes. It is similar to the Linear Regression algorithm in that these two algorithms
try to learn the parameters of a linear function (w, b) that mapsX to y. The only difference
is the nature of the output. The classification task requires a discrete output. Therefore
our estimating function f(X) should have a discrete output as well. However, the problem
is that the gradient descent algorithm assumes that the cost function is differentiable at all
points. Since the output of the estimating function (ŷ) is a discrete value, we will not be
able to differentiate it to get the gradients. Moreover, the linear function wX + b returns a
real value which need not be in the range [0, 1]. Therefore, we need to use another function
which scales down the value given by wX + b to a value in the range [0, 1]. The function
should also be differentiable at all points. One such function is the sigmoid function, given
by,

σ(x) =
1

1 + e−x

−6 −4 −2 0 2 4 6

0.5

1

σ(x)
σ′(x)

Therefore, instead of defining ŷ = wX + b we define the predicted value as,

ŷ =
1

1 + e−(wX+b)

Now let us find ∂ŷ
∂w

and ∂ŷ
∂b

.

∂ŷ

∂w
=

∂

∂w

1

1 + e−(wX+b)

=
−1

(1 + e−(wX+b))2
× ∂

∂w
(1 + e−(wX+b))

=
−1

(1 + e−(wX+b))2
× e−(wX+b) × (−X)

= ŷ(1− ŷ)× (X) (substituting the value of ŷ) (11)

8



Similarly,

∂ŷ

∂b
= ŷ(1− ŷ) (12)

We see that the sigmoid function is continuous throughout its domain. Therefore, we
assume that if ŷk > 0.5 then the example Xk is classified as 1, else it is classified as 0.

To compute the cost and update the parameters, we need an alternate cost function
(rather than MSE) as the quantities that we will be computing will lie in the range [0, 1],
and their differences are low. Thus the squares of their differences are much lesser. Due to
these facts, MSE will not give a good estimate of the cost. We define another cost function
called Binary Cross-entropy given by,

J(y, ŷ) =
−1

m

M∑
i=1

yi log ŷi + (1− yi) log (1− ŷi)

Computing Gradients

∂J(y, ŷ)

∂w
=

∂

∂w

−1

m

m∑
i=1

y log ŷ + (1− y) log (1− ŷ)

=
−1

m

m∑
i=1

∂

∂w

(
y log ŷ + (1− y) log (1− ŷ)

)

=
−1

m

m∑
i=1

y
∂

∂w
log ŷ + (1− y)

∂

∂w
log (1− ŷ)

=
−1

m

m∑
i=1

y

ŷ

∂

∂w
ŷ − (1− y)

(1− ŷ)

∂

∂w
ŷ

=
−1

m

m∑
i=1

(
y

ŷ
− (1− y)

(1− ŷ)

)
∂

∂w
ŷ

=
−1

m

m∑
i=1

(
y

ŷ
− (1− y)

(1− ŷ)

)
ŷ(1− ŷ)X

=
−1

m

m∑
i=1

(
y(1− ŷ)− ŷ(1− y)

ŷ(1− ŷ)

)
ŷ(1− ŷ)X

=
−1

m

m∑
i=1

(
y − yŷ − ŷ + yŷ

ŷ(1− ŷ)

)
ŷ(1− ŷ)X

=
−1

m

m∑
i=1

(y − ŷ)X

∂J(y, ŷ)

∂w
=

1

m

m∑
i=1

(ŷ − y)X (13)

9



Similarly,

∂J(y, ŷ)

∂b
=

1

m

m∑
i=1

(ŷ − y) (14)

Using the gradients given by (13) and (14) we can update the parameters w and b.

Algorithm 2: Logistic Regression

Data: Input feature (X ), ground truth (y), learning rate (η), number of steps
(steps)

Result: Optimum values of w and b such that J(w, b) is minimum
w ← random value, b← random value

i← 1

while i ≤ steps do

ŷ ← σ(wXj + b) ∀j
cost← −1

m

∑m
j=1 yj log ŷj + (1− yj) log (1− ŷj)

gradientw = 2
m

∑m
j=1(ŷj − yj)(Xj)

gradientb = 2
m

∑m
j=1(ŷj − yj)

w ← w − η × gradientw
b← b− η × gradientb
i← i+ 1

end

10


