Back Propagation Rule

Consider a model M with [ layers. Let H' represent the i layer of the architecture, such
that, H° is the input layer and H'! is the output layer. Let M and N be the size of input
feature vector and output vector of the network respectively. Therefore RM and RY is the
cartesian set of all possible input vectors and output vectors respectively.

input € RY output € RY

Without the loss of generality let us consider the activation function at each layer to be ¢,
where ¢ is a real valued function that obeys universal approximation theorem. Let weight
vector of the synapses between H® and H(+Y (i € W) be w®, h¥ be the vector representing
the perceptrons of the i layer and b be the vector representing the bias applied to the
perceptrons of the i** layer. Thus during the feed forward process the value for the next
layer is computed as:
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Where 3 is the predicted value of the network for the input feature vector x. Let y is
the ground truth label for . The amount by which the predicted value (7) deviates from
the ground truth value (y) is called the cost of the model. There are several functions to
calculate the cost function for the model. These are few that are more frequently used
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Note: Categorical Cross Entry is used for multi-class and multi-label classification prob-
lems, whereas binary cross entropy is used for uni-class classification problems.

Calculating Gradient:

During the training phase, the model which is initialised with random weight will adjust
its weights (w(®,w™®,w®, . . wl=Y). Once the model predicts an output it compares the
predicted value with the ground truth and finds the cost using a cost function J. The error
is then back propagated from the output layer to the input layer until all the weights are
updated. In general the weights are updated by the rule:
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Where 7 is the learning rate and V is the gradient.

The gradient (V) is opposite to the direction of the minima of the cost function J, thus
when the weights are updated the sign of the gradient is flipped so that the model reaches
the minima. In order to calculate the new weights we need only the gradient. During
the back propagation this gradient is calculated and back propagated using chain rule of
differentiation. Consider the output layer and the layer that is directly connected with the
output layer (the penultimate layer). According to our description of the model in (1) the
output y can be expressed as:
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For the same of simplicity let us consider that the output layer is activated using Rectified
Liner Unit function, which is given by :
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If y < 0 then the output is zero then the gradient will be also zero, in which case there will
be no back propagation. Now let us consider some non-zero value of . Therefore
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For this particular case let us consider Mean Squared Error function for calculation the

cost. You can use any suitable function, but the for the sake of simplicity of math involved
we stick to MSE for now. The cost can be written as:
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To calculate the gradient of the to update an element w,ip ) we partially differentiate (4)
with respect to w?
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In the above equation the parameter y; is the ground truth and is independent of any weights.
Thus differentiating that will yield 0. The term (w®)Th® can be expanded as,
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Thus while partially differentiating the term (w®)”h®) with respect to w§p ), all terms except
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w; hy ) will become zero. Thus (5) can be written as.
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We calculate the gradient using equation (6) and substitute the gradient in (2) to calculate

the new value of wZ(p ). We repeat the same process for N number of times to update all

values of w®). This completes the correction of weights at the penultimate layer.
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Back Propagating Gradient:

We need to propagate the gradient from last layer to the input layer and update all weights
that we encounter in the path. From (2) we know that the weight correction is only dependent
on the gradient(V), this we need to calculate the partial derivative of the cost function with
respect to the weight value that we want to update. Since no weights ,except the weights
that connects to the output layer, is directly related to the cost function in the network, we

follow chain rule to find the gradient of weights all subsequent preceding layers.
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Let us consider a " weight w,”, connecting to the layer (¢ + 1) that we want to update.

To do this we need the gradient of the cost function J with respect to the weight:
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Figure 1: Perceptron of (q+1) layer in the network

The gradient of the cost function J with respect to 0! can be written as:
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Using Result of (7) we can find the gradient of the cost function with respect to any weight

and using (2) we can update the weights.



Activation Functions(¢)
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Note: These are few of the activation that will be frequently used in the perceptron. Out of
these, Softmax function is a function that takes N inputs as parameters and computes the
value. This is often used in the output layer if problem demands for a probability distribution
instead of deterministic results.



